La circunferencia es una curva plana y cerrada donde todos sus puntos están a igual distancia del centro.
|
La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.
Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales, o los focos coinciden. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono regular de infinitos lados, cuya apotema coincide con su radio.
La intersección de un plano con una superficie esférica puede ser: o bien el conjunto vacío (plano exterior); o bien un solo punto (plano tangente); o bien una circunferencia, si el plano secante pasa por el centro, se llama ecuador
La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.
Elementos de la circunferencia
Existen varios puntos, rectas y segmentos, singulares en la circunferencia:
- Centro, es el punto interior equidistante de todos los puntos de la circunferencia;
- Radio. Es el segmento que une el centro de la circunferencia con un punto cualquiera de la misma. El radio mide la mitad del diámetro.El radio es igual a la longitud de la circunferencia dividida entre 2π.
- Diámetro. El diámetro de una circunferencia es el segmento que une dos puntos de la circunferencia y pasa por el centro. El diámetro mide el doble del radio. El diámetro es igual a la longitud de la circunferencia dividida entre π;
- Cuerda. La cuerda es un segmento que une dos puntos de la circunferencia. El diámetro es la cuerda de longitud máxima.
- Recta secante. Es la línea que corta a la circunferencia en dos puntos;
- Recta tangente. Es la línea que toca a la circunferencia en un sólo punto;
- Punto de Tangencia es el punto de contacto de la recta tangente con la circunferencia;
- Arco. El arco de la circunferencia es cada una de las partes en que una cuerda divide a la circunferencia. Un arco de circunferencia se denota con el símbolo sobre las letras de los puntos extremos del arco.
- Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro.
Diámetros conjugados
Dos diámetros de una sección cónica se denominan conjugados cuando toda cuerda paralela a uno de ellos es bisecada por el otro. Por ejemplo, dos diámetros de la circunferencia perpendiculares entre sí son mutuamente conjugados. En una elipse dos diámetros son conjugados si y sólo si la tangente a la elipse en el extremo de un diámetro es paralela a la tangente al segundo extremo.
Punto interior
Es un punto en el plano de la circunferencia, cuya distancia al centro de la circunferencia es menor que el radio. El conjunto de todos los puntos interiores se llama interior de la circunferencia. Respecto al círculo, claramente, se distinguen el interior, el exterior y la frontera, que es precisamente la respectiva circunferencia.
Posiciones relativas
La circunferencia y un punto
Un punto en el plano puede ser:
- Exterior a la circunferencia, si la distancia del centro al punto es mayor que la longitud del radio.
- Perteneciente a la circunferencia, si la distancia del centro al punto es igual a la longitud del radio.
- Interior a la circunferencia, si la distancia del centro al punto es menor a la longitud del radio.
La circunferencia y la recta
Una recta, respecto de una circunferencia, puede ser:
- Exterior, si no tienen ningún punto en común con ella y la distancia del centro a la recta es mayor que la longitud del radio.
- Tangente, si la toca en un punto (el punto de tangencia o tangente) y la distancia del centro a la recta es igual a la longitud del radio. Una recta tangente a una circunferencia es perpendicular al radio que une el punto de tangencia con el centro.
- Secante, si tiene dos puntos comunes, es decir, si la corta en dos puntos distintos y la distancia del centro a la recta es menor a la longitud del radio.
- Segmento circular, es el conjunto de puntos de la región circular comprendida entre una cuerda y el arco correspondiente
Dos circunferencias
Dos circunferencias, en función de sus posiciones relativas, se denominan:
- Exteriores, si no tienen puntos comunes y la distancia que hay entre sus centros es mayor que la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 1)
- Tangentes exteriormente, si tienen un punto común y todos los demás puntos de una son exteriores a la otra. La distancia que hay entre sus centros es igual a la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 2)
- Secantes, si se cortan en dos puntos distintos y la distancia entre sus centros es menor a la suma de sus radios. No importa que tengan igual o distinto radio. Dos circunferencias distintas no pueden cortarse en más de dos puntos. Dos circunferencias son secantes ortogonalmente si el ángulo entre sus tangentes en los dos puntos de contacto es recto. (Figura 3)
- Tangentes interiormente, si tienen un punto común y todos los demás puntos de una de ellas son interiores a la otra exclusivamente. La distancia que hay entre sus centros es igual al valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra. (Figura 4)
- Interiores excéntricas, si no tienen ningún punto común y la distancia entre sus centros es mayor que 0 y menor que el valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra.
- Interiores concéntricas, si tienen el mismo centro (la distancia entre sus centros es 0) y distinto radio. Forman una figura conocida como corona circular o anillo. Una de ellas tiene que tener mayor radio que la otra. (Figura 5)
- Coincidentes, si tienen el mismo centro y el mismo radio. Si dos circunferencias tienen más de dos puntos comunes, necesariamente son circunferencias coincidentes.
Ángulos en una circunferencia
Un ángulo, respecto de una circunferencia, pueden ser:
Ángulo central, si tiene su vértice en el centro de esta. Sus lados contienen a dos radios.
- La amplitud de un ángulo central es igual a la del arco que abarca.
Ángulo inscrito, si su vértice es un punto de la circunferencia y sus lados contienen dos cuerdas.
- La amplitud de un ángulo inscrito en una semi circunferencia equivale a la mayor parte del ángulo exterior que limita dicha base. (Véase: arco capaz.)
Ángulo semi-inscrito, si su vértice es un punto de la circunferencia y sus lados contienen una cuerda y una recta tangente a la circunferencia. El vértice es el punto de tangencia.
- La amplitud de un ángulo semi-inscrito es la mitad de la del arco que abarca.
Ángulo interior, si su vértice está en el interior de la circunferencia.
- La amplitud de un ángulo interior es la mitad de la suma de dos medidas: la del arco que abarcan sus lados más la del arco que abarcan sus prolongaciones.
Ángulo exterior, si tiene su vértice en el exterior de la circunferencia
Longitud de la circunferencia
El interés por conocer la longitud de una circunferencia surge en Babilonia ( actual Irak), cuando usaban los carros con rueda, era primordial relacionar el diámetro o radio con la circunferencia.8
- La longitud de una circunferencia es:
donde es la longitud del radio.
Pues (número pi), por definición, es el cociente entre la longitud de la circunferencia y el diámetro:
Área del círculo delimitado por una circunferencia]
El área del círculo delimitado por la circunferencia es:
Ecuaciones de la circunferencia
Ecuación en coordenadas cartesianas
En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (a, b) y radio r consta de todos los puntos (x, y) que satisfacen la ecuación
- .
Cuando el centro está en el origen (0, 0), la ecuación anterior se simplifica al
- .
La circunferencia con centro en el origen y de radio la unidad, es llamada circunferencia goniométrica, circunferencia unidad o circunferencia unitaria.
De la ecuación general de una circunferencia,
se deduce:
resultando:
Si conocemos los puntos extremos de un diámetro: ,
la ecuación de la circunferencia es:
Ecuación vectorial de la circunferencia
La circunferencia con centro en el origen y radio R, tiene por ecuación vectorial: . Donde es el parámetro de la curva, además cabe destacar que . Se puede deducir fácilmente desde la ecuación cartesiana, ya que la componente X y la componente Y, al cuadrado y sumadas deben dar por resultado el radio de la circunferencia al cuadrado. En el espacio esta misma ecuación da como resultado un cilindro, dejando el parámetro Z libre.
Sea C un punto fijo del plano, r un real positivo, P un punto cualquiera de ℝ, la ecuación |P - C|= r es la ecuación vectorial de la circunferencia de centro C y radio r.
Ecuación en coordenadas polares
Cuando la circunferencia tiene centro en el origen y el radio es c, se describe en coordenadas polares como
Cuando el centro no está en el origen, sino en el punto y el radio es , la ecuación se transforma en:
Ecuación paramétrica de la circunferencia
La circunferencia con centro en (a, b) y radio c se parametriza con funciones trigonométricas como:
y con funciones racionales como
- , donde t recorre todos los valores reales y se llama parámetro
No hay comentarios:
Publicar un comentario